0=-16x^2+136x+250

Simple and best practice solution for 0=-16x^2+136x+250 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+136x+250 equation:



0=-16x^2+136x+250
We move all terms to the left:
0-(-16x^2+136x+250)=0
We add all the numbers together, and all the variables
-(-16x^2+136x+250)=0
We get rid of parentheses
16x^2-136x-250=0
a = 16; b = -136; c = -250;
Δ = b2-4ac
Δ = -1362-4·16·(-250)
Δ = 34496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{34496}=\sqrt{3136*11}=\sqrt{3136}*\sqrt{11}=56\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-136)-56\sqrt{11}}{2*16}=\frac{136-56\sqrt{11}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-136)+56\sqrt{11}}{2*16}=\frac{136+56\sqrt{11}}{32} $

See similar equations:

| 0=-16x+136x+250 | | 5(1+s)=-9+6 | | 4x+2x=6+6 | | -73-10x=-3x+109 | | 5m=-3m+16 | | q=242.4-2+6+7-11 | | 7x+3.32=3x+10 | | 12(2c-4)=4c-2 | | 1m=-6m+25 | | 5x+(-3)=-28 | | 1=10+p/24 | | 2×+3y=3 | | 3(x-8)+6=4x-12 | | 1/4(24-20x)=3-5 | | 5x+2x+19=180 | | -1=r+2/16 | | 1000=2129.75x9.4+21028.35 | | 50/4y=100 | | 2a=-8a+30 | | x/2+11=20 | | 3/2p-p=27 | | 100=2129.75x9.4+21028.35 | | -7×4c=7c+6 | | x(2)+7x+10=0 | | 1/4(24-20x)=3-20x | | -8=-3+n/4 | | 1/7(x+2)2=-2 | | 1/4(12-20x)=3-20 | | -8(2x-9)=20–12x | | 2x+7x-3=5x+14 | | 138=-13k+8 | | 4y+2=59 |

Equations solver categories